If it's not what You are looking for type in the equation solver your own equation and let us solve it.
31n^2-33n=0
a = 31; b = -33; c = 0;
Δ = b2-4ac
Δ = -332-4·31·0
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-33}{2*31}=\frac{0}{62} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+33}{2*31}=\frac{66}{62} =1+2/31 $
| 1/4x*(-11)=5 | | x^2+8.1+15=1 | | b-6=2b-3 | | 3(b-10)=-30+3b | | (7x-13)=(x+29) | | 13k-6=3 | | n=+55 | | 20+6d=10+11d | | 7d^2+11d=0 | | 5=n/11 | | (3x+5)=(x+29) | | 3n-1=15 | | 59+59+4x+15=360 | | 3x+4(-1-5x)=13 | | 6(x10)=4x+56 | | 4+k/2=-3 | | 0.75x-9=6 | | 4z^2+7z-11=0 | | 96=3j | | 2(6x–11)+25=3(4x+1) | | 31z^2-30z-1=0 | | x=5/74.67 | | .33x+10=75x+5 | | 2/3=z/4 | | X=34-4y | | 31/2n=7 | | j2–9j+18=0 | | 464=29t | | 6x=10,2x=42 | | (6x+4)=10x | | g/14=26 | | 9(0-a)=15 |